

**AFFINITY SELECTION MASS SPECTROMETRY FOR IDENTIFICATION OF
 ACETYLCHOLINESTERASE LIGANDS IN STRYCHNOS PECKII**

Fernando Cassas^{1*}, Carla L.G. Santos², Felipe M. A. da Silva², Quezia B Cass¹

fcassas@protonmail.com; qcass@ufscar.br

1- Separare- Nucleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, (UFSCAR), São Carlos - SP, Brazil 2- Instituto de Química, Universidade Federal do Amazonas (UFAM), Manaus - AM, Brazil

Strychnos species are recognized for biosynthesizing a wide range of alkaloids with proven activity on the central nervous system. *Strychnos peckii* is traditionally used as a component of *curare*, a preparation employed by Indigenous natives from northern Brazil for hunting and warfare. Due to its use in paralytic preparations, the aqueous extract of *S. peckii* was selected to search for acetylcholinesterase (AChE) ligands using affinity selection mass spectrometry (AS-MS), via enzyme immobilization on magnetic particles. Untargeted dereplication was initially carried out resulting in 46 annotated metabolites of which 33 were alkaloids¹. For the AS-MS assay, 200 µg of *eel*AChE was immobilized on 10 mg of amino-functionalized magnetic beads through Schiff's base, using glutaraldehyde as the linker.² Control samples were prepared under identical conditions, with enzyme inactivation achieved using 100% MeOH (t = 60 min). Choline formation was monitored to assess enzymatic activity. The four stages of the assay were modulated using galantamine as the standard ligand: incubation, separation, ligand dissociation, and ligand identification by LC-HRMS. An affinity ratio (AR) of 1.3 was determined for galantamine. The affinity selection assay was thus carried out under these modulated conditions. Dissociated ligands were analyzed by LC-HRMS, and the data were processed using MZmine for ion alignment, deconvolution, and peak area calculation. The metabolites with AR > 1.3 were identified as AChE ligands and annotated as: (1) *lyaloside* (3.73), (2) *10-hydroxygeissoschizol* (3.69), (3) *camptothecin derivative* (2.51); (4) *5-carboxy strictosidine* (2.05); (5) *corynantheol* (2.04); (6) *isodolichantoside* (1.90); (7) *derivative* (1.68); (8) *strictosidine* (1.66); (9) *corynantheidal* (1.63); (10) *desoxycordifoline* (1.57); (11) *kaempferol-3-O-rhamnoside* (1.36); (12) *kaempferol* (1.35); (13) *topotecan derivative* (1.29); (14) *harman-3-carboxylic acid* (1.27). Among them, compounds (1), (3), (7), (8), (10-12), and (14) have already been described as AChE ligands in the literature. The metabolites (4), (8), (10) and (11) have been isolated and are currently undergoing orthogonal assays for structural confirmation and biochemical characterization.

¹Cassas F, Santos CLG, da Silva FMA, Cass QB. *Strychnos peckii* B.L. Rob.: secondary metabolite annotation by liquid chromatography tandem high-resolution mass spectrometry with insights from biogenesis. *Anal Bioanal Chem.* 2025 Jul 1. doi: 10.1007/s00216-025-05967-0;

²Lima, Juliana M.; Leme, Gabriel M.; Costa, Emmanuel V.; Cass, Quezia B. LC-HRMS and acetylcholinesterase affinity assay as a workflow for profiling alkaloids in *Annona salzmannii* extract. *Journal of Chromatography B-Analytical Technologies in The Biomedical and Life Sciences*, v. 1164, p. 122493, 2021. doi: 10.1016/j.jchromb.2020.122493.

Keywords: AChE ligands, Natural Products, *Strychnos L.*, AS-MS

